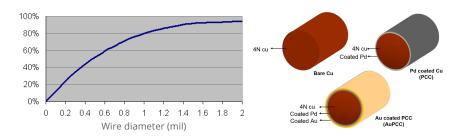
COPPER WIRE BENEFITS Cut wire has long been used as a

Cu wire has long been used as a method of connecting a silicon die to the package terminals. With the recent increase in gold (Au) wire cost, Cu wire is an attractive way to manage overall package cost.

- ► Increasing cost of Au is driving the need to use lower cost Cu wire
- Copper is an attractive replacement material for Au because of good electrical & thermal performance
- Amkor has a long & wide history of Cu wire process
 - ≥ 20+ years of experience (development to HVM)


 - Under development: >2.0 mils diameter Cu wire
- Mass production on both leadframe & laminate products
- Cu wire is supported in all Amkor worldwide factories with mass production since 2006
- Amkor worldwide Cu wire BOM/BKMs established

Copper Wirebonding

Cu wire offers significant cost advantage over Au wire. It is also an excellent replacement for Au wire due to its similar electrical properties. Self-inductance and self-capacitance are nearly the same for Au and Cu wire and Cu wire has lower resistivity. In applications where resistance due to bond wire can negatively impact circuit performance, using Cu wire can offer improvement.

Wire Material Cost Savings Cu Versus Au

Cu-Alloy Wire Readiness

Package Family	Cu Wire HVM Plant
CABGA	C3, K4, P3, ATJ
fcCSP	C3
LQFP	P1, ATJ
MicroLeadFrame® (QFN)	C3, P1, P3
MQFP	P1, T1
PBGA	K4, P3
PDIP, PLCC	P1
Package-on-Package (PoP)	К4
PSOP	P1
SBGA	К4
SC70	P1
SCSP	C3, K4, ATJ
System in Package (SiP)	К4
SOIC	P1
SO8-FL	M1
SOT-23	P1
SSOP	P1
TQFP	P1, ATJ
TSSOP	P1
TSON, TOLL	M1

Copper Wirebonding

	Cı	ırrent Carrying	Capacity (Amp	os)	3D Electrical Parasitic Parameters						
Wire Dia (μm)		Wire Length >	40 mil (1 mm)		Wire Length = 40 mil (1 mm)						
		Wire	Туре		R11 (mΩ) @ 1 GHz	C11	(pF)	L11 (nH)		
	Au Wire (4-9's)	Au Wire (3-9's)	Au Wire (2-9's)	Cu Wire (4-9's)	Au Wire	Cu Wire	Au Wire	Cu Wire	Au Wire	Cu Wire	
51	1.83	1.81	1.61	1.83	73.9	62.2	0.119	0.119	0.515	0.515	
25	0.63	0.62	0.55	0.63	144.4	116	0.081	0.081	0.69	0.677	
23	0.56	0.55	0.49	0.56	154.1	128.7	0.078	0.078	0.707	0.687	
20	0.45	0.45	0.4	0.45	172.9	145	0.075	0.075	0.728	0.724	
18	0.39	0.38	0.34	0.39	196.3	163.2	0.071	0.071	0.76	0.751	
15	0.29	0.29	0.26	0.29	234.3	194.7	0.067	0.067	0.811	0.801	
Resistivity (µohm-cm)	2.3	2.5	3	1.7							

Minimum Bond Pad Size by Wire Diameter (T = Bond Pad Metal Thickness)

	0.7 ≤ T ≤ 1.5 μm				1.5 ≤ T ≤ 2.5 μm				2.6 ≤ T ≤ 4.0 µm				
		FWD		SSB		FWD		SSB		FWD		SSB	
		ВРО	BPP	ВРО	BPP	ВРО	BPP	ВРО	BPP	ВРО	BPP	ВРО	BPP
Recommended Wire	15 µm	≥40	≥48	≥42	≥50	≥42	≥50	≥44	≥52	≥44	≥52	≥46	≥54
	18 µm	≥45	≥53	≥47	≥55	≥47	≥55	≥49	≥57	≥49	≥57	≥51	≥59
	20 µm	≥50	≥58	≥52	≥60	≥52	≥60	≥54	≥62	≥54	≥62	≥56	≥64
	23 µm	≥58	≥66	≥60	≥68	≥60	≥68	≥62	≥70	≥62	≥70	≥64	≥72
	25 µm	≥62	≥70	≥64	≥72	≥64	≥72	≥66	≥74	≥66	≥74	≥68	≥76
	30 µm	≥79	≥87	≥81	≥89	≥81	≥89	≥83	≥91	≥83	≥91	≥85	≥93
	33 µm	≥85	≥93	≥87	≥95	≥87	≥95	≥89	≥97	≥89	≥97	≥91	≥99
	38 µm	≥105	≥113	≥107	≥115	≥107	≥115	≥109	≥117	≥109	≥117	≥111	≥119
	51 µm	≥150	≥158	≥152	≥160	≥152	≥160	≥154	≥162	≥154	≥162	≥156	≥164

Minimum Bond Pad Size by Wire Diameter (T = Bond Pad Metal Thickness)

	>60 nm	55/60 nm	45/40 nm	28 nm	<28 nm
Non-Low-k Or Low-k	Low-k	Low-k	Ultra Low-k	Ultra Low-k	Ultra Low-k
Reliability Status	Customer Qualified	Customer Qualified	Customer Qualified	Customer Qualified	In Process
Production Status	HVM	HVM	HVM	HVM	Development

Visit <u>amkor.com</u> or email <u>sales@amkor.com</u> for more information.

With respect to the information in this document, Amkor makes no guarantee or warranty of its accuracy or that the use of such information will not infringe upon the intellectual rights of third parties. Amkor shall not be responsible for any loss or damage of whatever nature resulting from the use of, or reliance upon it and no patent or other license is implied hereby. This document does not in any way extend or modify Amkor's warranty on any product beyond that set forth in its standard terms and conditions of sale. Amkor reserves the right to make changes in its product and specifications at any time and without notice. The Amkor name and logo are registered trademarks of Amkor Technology, Inc. All other trademarks mentioned are property of their respective companies.

© 2022 Amkor Technology, Incorporated. All Rights Reserved. TS105H-EN Rev Date: 02/22