AMKOR OVERVIEW

Amkor entered volume manufacturing in 2013. Five package families (laminate/leadframe) are in volume production with >50 other packages under qualification and evaluation.

KEY FEATURES

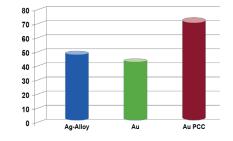
- Ag-Alloy wire is softer than Cu wire resulting in lower Al-Splash and lower risk of bond pad damage
- Ag-Alloy wire has a wide process window that improves manufacturability for devices with fragile bond pad structures

BENEFITS

Ag-Alloy wire is the best low-cost replacement for applications that need:

- Die-to-die bonding, waterfall bonding and very thin Al pad
- Ultra-fine bond pad pitch (BPP) and small bond pad openings (BPO) with less Al splash
- Ultra-low loop height
- Ag alloy has higher resistivity than Au and PCC

TECHNOLOGY SOLUTIONS


Silver Wirebonding

A huge increase in the price of gold (Au) has driven the need for lower cost wire materials. Bare copper, Palladium-Coated Copper (PCC), Au-coated PCC (Au PCC) and silver (Ag) alloy wires have emerged as alternatives to gold bond wires. Copper-based wires are low cost and have excellent electrical resistivity. However, the hardness of copper makes it difficult to use in many applications such as those with fragile bond pad structures. For these applications, Ag-Alloy offers properties similar to those of gold while its cost is similar to that of Au PCC.

Package Families Using	Package Families Using Ag-Alloy Wire Devices				
CABGA	PSOP				
LQFP	SC70				
MicroLeadFrame [®] (QFN)	SCSP				
MQFP	SOIC				
PBGA	SOT-23				
PDIP	SSOP				
PLCC	TQFP				
fcCSP	TSSOP				

Note: Contact Amkor for detailed production and development status of specific package families

Free Air Ball (FAB) Hardness (Hv)

Ag-Alloy Wire Readiness

	In Production	In Development	
Process Nodes	14 nm	<14 nm	
Wire Diameter	18 µm	15 µm	
Inline Bond Pad Pitch	40 µm 35 µm		
Staggered Bond Pad Pitch	25/50 μm 20/40 μm		
Standoff Stitch Bonding Pad Pitch	50 µm 40 µm		

Silver Wirebonding

Ag-Alloy Wire Readiness

	Ag-Alloy	Au	Au PCC	Impact	
Wire Cost	Lower Cost	Expensive	Lowest Cost	Au PCC And Ag-Alloy Wires Are Significantly Cheaper Than Au Wire	
FAB Hardness	Soft	Soft	Hard	Harder Materials Cause Cratering, Bond Pad Crack	
Process Windows (Force, Power, Time)	Wide	Wide	Narrow	Wider Process Window Improves Manufacturability For Devices With Fragile Bond Pad Structures	
Al Splash	Minimal	Minimal	More	Less Aluminum Splash Is Better For Fine Pitch And Small BPO	
Ultra-low Loop Capability	Excellent	Excellent	Limited	Ultra-low Loop Capability Allows Thinner Packages	
Resistivity	Good	Better	Best	Lower Resistivity Is Better For High Current Carrying Applications	

Properties of Different Wire Materials

		Ag-Alloy	Au	Au PCC	
	Phys	ical Properties	·		
Hardness (Hv)	Free Air Ball (EFO = 120 mA)	50~60	44~49	70~80	
	HAZ	50~60	44~49	55~65	
	Wire	60~70	49~55	60~70	
HAZ Length (μm)		60~80	60~80	80~100	
Density (g/cm2)		10.58	19.2	8.98	
Elastic Modulus (Gpa)		60~70	80~90	90~100	
Recrystallization Temp. (°C)		500~550	500~550	500~550	
Melting Point (°C)		980~1010	1060~1080	1080~1100	
Fusing Current (A, Length = 10 mm)		0.44	0.47	0.58	
Resistivity (uΩ cm) @ 20°C		3.3	2.9	1.9	
Thermal Conductivity (W/mk)		429	317	401	
Coefficient Of Thermal Expansion (0 ~ 100°C, ×10-6/K)		19	14	17	
Elongation (%)		2~12	2~7	3~17	
	Mater	ial Composition			
Purity (%)		>95%	>99%	99.98	

Note: Numbers in the table above are based on wire diameter of 0.8 mil

in y () () () %

Visit amkor.com or email sales@amkor.com for more information.

With respect to the information in this document, Amkor makes no guarantee or warranty of its accuracy or that the use of such information will not infringe upon the intellectual rights of third parties. Amkor shall not be responsible for any loss or damage of whatever nature resulting from the use of, or reliance upon it and no patent or other license is implied hereby. This document does not in any way extend or modify Amkor's warranty on any product beyond that set forth in its standard terms and conditions of sale. Amkor reserves the right to make changes in its product and specifications at any time and without notice. The Amkor name and logo are registered trademarks of Amkor Technology, Inc. All other trademarks mentioned are property of their respective companies. © 2022 Amkor Technology, Incorporated. All Rights Reserved. TS108E-EN Rev Date: 02/22