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'~ Machine Learning Overview

pdting

Machine Learning is an Al sub-
category focused on finding patterns
in data and using those patterns to
make predictions
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Image source: https://www.quora.com/Whats-the-difference-between-the-terms-machine-learning-deep-learning-and-Al V@ I C e
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ik Machine Learning Training
B ()

Input, feed a lot of data Machine Learns patterns MODEL
in the data

“OK, | see the patterns

and understand the data
now”
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Disclaimer: No dogs were harmed as part of this presentation

Machine Learns to
recognize Chihuahua
patterns
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“hmm, ok | learned what
Chihuahuas look like”

Pointed ears

Small typically dark
nose

Little beady eyes
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o 2 Chihuahua or Muffin?
B 5F "
Input Chihuahuas and “non Algorithm applies
Chihuahuas” Chihuahua model to

classify

@.EG.@W& MODEL Classification Result
CHEE S
u | il M : “You didn’t train me what
ol a muffin looks like?!”
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.~ Input training data is important!

Sheepdog or Mop? Labradoodle or fried chicken?




Problem Statement

* Testing complexity and test cost continues to increase
- Quality is the new Cost
- More testing
- Multiple domain types and insertions needed
- Need to avoid longer test times
- Need to minimize test costs
* Process variations are not static, yet testing methodologies typically are
static
- Same tests applied throughout device life cycle
- Engineers manually adjust
e Laborious, tedious, “after the fact; late”
* Negatively impacts quality
* TONS of data, but humans are not efficient at analyzing it
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Test Compaction — Hypothesis 1

Can a machine learning algorithm learn measurement correlations to automatically optimize
esting metrics?
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.o, Dynamic Spatial Machine Learning of Wafer Testing —
S ‘@ - Hypothesis 2

" Can a machine learning algorithm learn spatial correlations to automatically optimize testing

Machine Learning
Algorithm Trains Trained Model

—

Predicted test results

Apply Model to
predict result
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s °-.» Specification Test Compaction Concept
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T: Total set of n tests
S: S T (Subset of k tests)

Et: Number of test escapes for test t

The objective is to minimize the size of
S while maintaining a low

k
i—o Ei

where Ei is the test escape for ith test
in S.

Different sizes of S can be produced
depending on what the acceptable
escape rate is.

Learning Phase

Complete list of Tests and > Learn Correlation Models

measurements for each die

Testing Phase

Subset of Tests

:> Learned Correlation :>
Models

Remaining Tests

=) fulal (=== compare
Decision P

o
T

Test Limits of
Remaining Tests

t Compare

Test Limits of
Subset of Tests
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. Test Compaction — Data Description & Idiosyncrasies

e Dataset contains 6 wafers, with 20 test
measurements

* There are 30 failing die out of 402
* Small number of die locations per wafer

* No test groups or test times

Wafer # Pass count |Fail count

1 58 9
2 60 7
3 57 10
4 65 2
5 67 0
6 65 2



sy '# Test Compaction — Pre-filter

! ok
“"D.,
g ! Clean the Data (labradoodle or fried chicken?)
T ] T An important pre-step to training the model is
‘ T to clean up the data before it is fed to the
I training algorithm.
f We removed outliers before training the

algorithm

Test 1 Test 2 Test 3



Test Correlation [\ | |
High correlation

* Bi-variate correlation of all test pairs
using absolute values of Pearson
Correlation Coefficients (PCC).

- This shows the degree by which two
variables co-vary

Test 1
Test 2
Test3
Test 4
Test5
Test 6
Test7
Test 8
Test9
Test 10
Test 11
Test 12
Test 13
Test 14
Test 15
Test 16
Test 17
Test 18
Test 19
Test 20

~ * Multi-variate non-linear regression
modeling is a more suitable technique

= for discovering correlations between
tests.

Test 21
Test 22
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. Low correlation
Correlation Results w

Yellow = low correlation
Blue = high correlation

: |
Many measurements are highly correlated! V@ |Ce



Test Correlations

* Multi-variate Adaptive Regression Splines (MARS)! is a non-linear
regression analysis methodology

* Training consists of two phases that aim to select the optimal number
of features:

- Forward pass: Starting with the intercept term and progressively
adds a basis function that minimizes the prediction error. This
usually generates an overfit model

- Backward pass: This stage prunes the basis functions using a
metric that penalizes the model based on the number of features

[1] Friedman, J. H. (1991). "Multivariate Adaptive Regression Splines". The Annals of Statistics. @



Test Correlations

* Description of the MARS-based experiment:

- Train a MARS model for every test in the dataset and calculate the
accuracy of the model using a hold-out set of wafers

- [dentify the most accurately modeled tests based on the prediction
error

* Most accurately predicted tests: Test 1, Test 2, Test 3, Test 7, Test 11
Test 15, Test 16

* For this experiment the python implementation of MARS (pyearth)
was used
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Test Compaction & Reordering — Trained algorithm suggests

T Ve
‘s, ¢ subset of tests
‘ Tﬁ \o :j
|y e * Greedy Algorithm for test
Test 12 compaction:
it * Start by including the test that captures
Test 16 the most failing devices. Test 11 in
Test 15 our dataset
3 Test9 . ..
£ Test2 * Iteratively add the test that minimizes
Qe the test-escapes. This can skip tests
Test4 based on the overlap

Test 6

e.g. tests that capture all 30 failing die
are: Test1,3,5,8, 7

Algorithm suggests to use these 5 tests

Algorithm could automati.call?/ re-order tests to
optimize test flow (i.e. [earn and apply most

T S efficient tests and optimize test flow)
ailing Die
Test time savings reduces cost

Other algorithm examples: Support vector machines, decision trees, neural networks
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Spatial decomposition of wafer measurements

g(x)y) = albl(x'y) + -+ anbbnb(x'y)

ot ay, by, (%, y)é

0

0

by (x,y) = ax + by b,(x,y) = cos a7 by(x,y) = <_> * 1M,
u

0

k
Learn these functions from the data...

*K. Huang, N. Kupp, J. Carulli, and Y. Makris, “Process Monitoring through Wafer-level Spatial Variation Decomposition,” ITC 2013

‘s * Dynamic Spatial Machine Learning of Wafer Testing
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s * Examples of spatial basis functions

Linear Radial

A= [6{1, a,, s, C{4] ?

. I Basis function learned
o using domain-specific

Checkerboard #| Checkerboard #2 knowledge
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: A "~ Algorithm Learns Spatial Correlation Pattern

» Spatial correlation refers to the relationship that certain test measurements
have as a function of the die locations

* One way to identify such wafer-level spatial correlations is to perform visual
inspection on the wafer maps of each test.

Wafer 1
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* In our experiments we performed spatial-correlation modeling using
Gaussian processes?

Sampling Train Statistical Predict Untested
Model Probe Test Outcomes

o gprObe:f([x’y])_'_e o .
: o/
o1 b

f0)

> [z,y]

Predicted

Actual

[2] N. Kupp, K. Huang, J. Carulli, Y. Makris, "Spatial Estimation of Wafer Measurement Parameters Using Gaussian Process Models”, Proceedings OV@qce
International Test Conference (ITC)



'°'f Spatial Correlation Accuracy Results

e Spatial correlation modeling example on Test 9

* Relative prediction error = 0.4%

Actual Training Samples Prediction
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[2] N. Kupp, K. Huang, J. Carulli, Y. Makris, "Spatial Estimation of Wafer Measurement Parameters Using Gaussian Process Models”, Proceedings OV@EICG
International Test Conference (ITC)



Summary

* Both hypothesis were shown to be true

* Machine learning algorithms can automatically learn test optimization
techniques by analyzing the data

* They can learn which tests are most important

* They can automatically generate the relevant/sub-set test list

* They can automatically optimize the test flow by re-organizing the test list
* Machine learning algorithms

* Can find correlations and dependencies in the data

* Use that information to optimize testing and lower test cost

 Example: the foreknowledge could be used to eliminate re-testing
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Next Steps

* Apply same methods to multiple and larger data sets
* Integrate machine learning technique into the SmarTest environment

* Develop an Al V93000 demonstration using Nvidia’s Jetson3 256 core
Al environment

* Kiosk Demo — Al ML Jetson 2 TX - operating within smartest that classifies
smartphone display images

[3] https://developer.nvidia.com/embedded/buy/jetson-tx2 @



https://developer.nvidia.com/embedded/buy/jetson-tx2

_ radb control select image
V93000 testflow selects image

Compares to classification. \

Send classification
0 V93000 workstation

Jetson2 camera identifies
// Classify |mage
%nt imageNet::Classify( float* rgba, uint32_t width, uint32_t height, float* confide

for( size_t n=0; n < mOutputClasses; n++ )

const float value = mOutputs[0].CPU[N];
° ° [ ]
if( value >= 0.4f ) { V t AI K k f d l I |
printf("class %04zu - %f (%s)\n", n, value, mClassDesc[n].c_str()); ISI IOS Or e O
sendResult(n,value, mClassDesc[n]);
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Future Considerations

* Develop Machine Learning APIs for the SmarTest that customers
could use from a library

* Develop similar APIs for the Nvidia Jetson Il Al environment that
could be controlled from SmarTest environment

* Customers would have a 256 core Al environment that they
can build their own models
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Measure the Connected World
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Thank You.
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